377 research outputs found

    Symmetry breaking in tournaments

    Get PDF
    We provide upper bounds for the determining number and the metric dimension of tournaments. A set of vertices S in V(T) is a determining set for a tournament T if every nontrivial automorphism of T moves at least one vertex of S, while S is a resolving set for T if every two distinct vertices in T have different distances to some vertex in S. We show that the minimum size of a determining set for an order n tournament (its determining number) is bounded by n/3, while the minimum size of a resolving set for an order n strong tournament (its metric dimension) is bounded by n/2. Both bounds are optimal.Peer ReviewedPostprint (published version

    Distinguishing tournaments with small label classes

    Get PDF
    A d-distinguishing vertex (arc) labeling of a digraph is a vertex (arc) labeling using d labels that is not preserved by any nontrivial automorphism. Let ρ(T) (ρ′(T)) be the minimum size of a label class in a 2-distinguishing vertex (arc) labeling of a tournament T. Gluck's Theorem implies that ρ(T) ≤ ⌊n/2⌋ for any tournament T of order n. We construct a family of tournaments ℌ such that ρ(T) ≥ ⌊n/2⌋ for any tournament of order n in ℌ. Additionally, we prove that ρ′(T) ≤ ⌊7n/36⌋ + 3 for any tournament T of order n and ρ′(T) ≥ ⌈n/6⌉ when T ∈ ℌ and has order n. These results answer some open questions stated by Boutin.Peer ReviewedPostprint (published version

    Antimagic Labelings of Caterpillars

    Get PDF
    A kk-antimagic labeling of a graph GG is an injection from E(G)E(G) to {1,2,,E(G)+k}\{1,2,\dots,|E(G)|+k\} such that all vertex sums are pairwise distinct, where the vertex sum at vertex uu is the sum of the labels assigned to edges incident to uu. We call a graph kk-antimagic when it has a kk-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K2K_2 is antimagic, but the conjecture is still open even for trees. Here we study kk-antimagic labelings of caterpillars, which are defined as trees the removal of whose leaves produces a path, called its spine. As a general result, we use constructive techniques to prove that any caterpillar of order nn is ((n1)/22)(\lfloor (n-1)/2 \rfloor - 2)-antimagic. Furthermore, if CC is a caterpillar with a spine of order ss, we prove that when CC has at least (3s+1)/2\lfloor (3s+1)/2 \rfloor leaves or (s1)/2\lfloor (s-1)/2 \rfloor consecutive vertices of degree at most 2 at one end of a longest path, then CC is antimagic. As a consequence of a result by Wong and Zhu, we also prove that if pp is a prime number, any caterpillar with a spine of order pp, p1p-1 or p2p-2 is 11-antimagic.Comment: 13 pages, 4 figure

    The Oriented Chromatic Number of the Hexagonal Grid is 6

    Full text link
    The oriented chromatic number of a directed graph GG is the minimum order of an oriented graph to which GG has a homomorphism. The oriented chromatic number χo(F)\chi_o({\cal F}) of a graph family F{\cal F} is the maximum oriented chromatic number over any orientation of any graph in F{\cal F}. For the family of hexagonal grids H2{\cal H}_2, Bielak (2006) proved that 5χo(H2)65 \le \chi_o({\cal H}_2) \le 6. Here we close the gap by showing that χo(H2)6\chi_o({\cal H}_2) \ge 6.Comment: 8 pages, 5 figure

    Symmetry breaking in tournaments

    Get PDF
    We provide upper bounds for the determining number and the metric dimension of tournaments. A set of vertices S is a determining set for a tournament T if every nontrivial automorphism of T moves at least one vertex of S, while S is a resolving set for T if every two distinct vertices in T have different distances to some vertex in S. We show that the minimum size of a determining set for an order n tournament (its determining number) is bounded by n/3, while the minimum size of a resolving set for an order n strong tournament (its metric dimension) is bounded by n/2. Both bounds are optimal.Postprint (published version

    Caterpillars have antimagic orientations

    Get PDF
    An antimagic labeling of a directed graph D with m arcs is a bijection from the set of arcs of D to {1, . . . , m} such that all oriented vertex sums of vertices in D are pairwise distinct, where the oriented vertex sum of a vertex u is the sum of labels of all arcs entering u minus the sum of labels of all arcs leaving u. Hefetz, Mütze, and Schwartz [3] conjectured that every connected graph admits an antimagic orientation, where an antimagic orientation of a graph G is an orientation of G which has an antimagic labeling. We use a constructive technique to prove that caterpillars, a well-known subclass of trees, have antimagic orientations.Peer ReviewedPostprint (published version

    Bounded queries to arbitrary sets

    Get PDF
    We prove that if P^(A [k])= P^(A [k+1]) for some k and an arbitrary set A, then A is reducible to its complement under a relativized nondeterministic conjunctive reduction. This result shows the first known property of arbitrary sets satisfying this condition, and implies some known facts such as Kadin's theorem (12] and its extension to the class C=P (4, 7]
    corecore